UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

COORDINACIÓN GENERAL DE FORMACIÓN BÁSICA COORDINACIÓN GENERAL DE FORMACIÓN PROFESIONAL Y VINCULACIÓN UNIVERSITARIA PROGRAMA DE UNIDAD DE APRENDIZAJE

I. DATOS DE IDENTIFICACIÓN

- 1. Unidad Académica: Facultad de Ingeniería, Mexicali; Facultad de Ingeniería y Negocios, Tecate; y Escuela de Ciencias de la Ingeniería y Tecnología, Valle de las Palmas.
- 2. Programa Educativo: Ingeniero en Mecatrónica
- 3. Plan de Estudios:
- 4. Nombre de la Unidad de Aprendizaje: Diseño Mecánico
- 5. Clave:
- 6. HC: 02 HL: 02 HT: 01 HPC: 00 HCL: 00 HE: 02 CR: 07
- 7. Etapa de Formación a la que Pertenece: Disciplinaria
- 8. Carácter de la Unidad de Aprendizaje: Obligatoria
- 9. Requisitos para Cursar la Unidad de Aprendizaje: Mecánica de Materiales

Equipo de diseño de PUA

Alex Bernardo Pimentel Mendoza Jesús Márquez González Carlos Alberto Chávez Guzmán

Fecha: 03 de septiembre de 2018

Firma

Vo.Bo. de Subdirectores de **Unidades Académicas**

Alejandro Mungaray Moctezuma

Angélica Reves Mendoza

Firma

María Cristina Castañón Bautista
H. OLISTINA CASTANCÍN &

II. PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

El propósito del curso es que el alumno adquiera los conocimientos para proponer el diseño de elementos mecánicos o analizar sistemas existentes, buscando un desempeño óptimo de acuerdo con las necesidades planteadas y garantizando el buen funcionamiento de estos con apego a las normas aplicables.

Esta unidad de aprendizaje inculca la creatividad, capacidad de análisis y la toma de decisiones en el alumno.

La asignatura pertenece al área de diseño en Ingeniería, con carácter obligatorio en la etapa disciplinaría.

III. COMPETENCIA DE LA UNIDAD DE APRENDIZAJE

Analizar elementos de sistemas mecánicos, a través de la aplicación de metodologías, teorías, conceptos y fundamentos de diseño mecánico, para brindar propuestas de solución a las necesidades de concepción de productos para su producción garantizando su buen funcionamiento, con creatividad y apego a las normas aplicables.

IV. EVIDENCIA(S) DE DESEMPEÑO

Portafolio de evidencias que incluya la solución de ejercicios, problemas en clase, tareas, estudios de caso y exámenes realizados a lo largo del curso donde se incluya al menos portada, desarrollo de cada actividad donde se mencione el planteamiento del problema, resultados e interpretación de éstas, así como una conclusión general.

V. DESARROLLO POR UNIDADES

UNIDAD I. Introducción al diseño mecánico

Competencia:

Identificar los fundamentos del diseño mecánico, a través del estudio de sus conceptos y consideraciones básicas, para su aplicación en la solución de problemas de diseño de un producto, con una actitud reflexiva y creativa.

Contenido: Duración: 2 horas

- 1.1. Teoría del diseño mecánico
 - 1.1.1. Identificación de necesidades
 - 1.1.2. El proceso de diseño
 - 1.1.3. Consideraciones de diseño
 - 1.1.4. Factor de seguridad
 - 1.1.5. Métodos de selección de materiales

UNIDAD II. Teorías y criterios de falla

Competencia:

Analizar elementos de sistemas mecánicos, a través de la aplicación del método o teoría de falla acorde al tipo de material y carga, para proponer soluciones a necesidades de diseño que soporten con seguridad las condiciones de operaciones requeridas, con una actitud reflexiva y responsabilidad.

Contenido: Duración: 10 horas

- 2.1. El círculo de Mohr y esfuerzos combinados
- 2.2. Fallas por carga estática
 - 2.2.1. Cargas estáticas
 - 2.2.2. Concentradores de esfuerzos
 - 2.2.3. Teoría del esfuerzo normal máximo
 - 2.2.4. Método de Mohr modificado
 - 2.2.5. Teoría del esfuerzo cortante máximo
 - 2.2.6. Teoría de la energía de distorsión
- 2.3. Fallas por cargas dinámicas
 - 2.3.1. Cargas fluctuantes
 - 2.3.2. Resistencia a la fatiga
 - 2.3.3. Factores que modifican la resistencia a la fatiga
 - 2.3.4. Teoría de Goodman
 - 2.3.5. Teoría de Soderberg
 - 2.3.6. Teoría de Gerber

UNIDAD IV. Diseño de ejes

Competencia:

Determinar las dimensiones finales en ejes de transmisión de potencia, mediante el análisis de las condiciones de carga y operación, para satisfacer los requisitos de resistencia y rigidez, con actitud responsable y profesional.

Contenido: Duración: 6 horas

- 3.1. Método de carga estática
- 3.2. Método de flexión alternante y torsión continua
- 3.3. Enfoque de Soderberg
- 3.4. Enfoque de Goodman
- 3.5. Velocidad crítica
- 3.6. Ajustes y tolerancias

UNIDAD III. Transmisión de potencia

Competencia:

Diseñar transmisiones de potencia, mediante la selección del sistema más adecuado y el dimensionamiento de sus variables, para asegurar la correcta transferencia de movimiento de un eje a otro, con actitud responsable.

Contenido: Duración: 8 horas

- 4.1. Elementos flexibles de transmisión de potencia
 - 4.1.1. Transmisión de potencia por bandas
 - 4.1.2. Transmisión de potencia por cadenas
- 4.2. Diseño de engranes
 - 4.2.1. Tipos y nomenclatura de engranes
 - 4.2.2. Cinemática de los engranes
 - 4.2.3. Relación de velocidades y trenes de engrane

UNIDAD V. Selección de otros elementos de máquinas

Competencia:

Seleccionar elementos necesarios en la integración de una máquina, mediante el uso de normas y/o catálogos de selección de fabricantes comerciales, para asegurar su correcto funcionamiento, con responsabilidad.

Contenido: Duración: 6 horas

- 5.1. Definición de los conceptos de embrague, acoplamiento, frenos y volante
- 5.2. Embragues y frenos de tambor con zapatas interiores o exteriores
- 5.3. Tipos y selección de acoplamientos
- 5.4. Tipos, vida útil y selección de cojinetes

VI. ESTRUCTURA DE LAS PRÁCTICAS DE TALLER				
No. de Práctica	Competencia	Descripción	Material de Apoyo	Duración
1	Identificar los elementos del proceso de diseño mecánico, por medio de diagramas, para su posterior aplicación en el diseño de productos, con actitud reflexiva y creativa.	Realiza un mapa de ideas en donde se muestra el proceso de diseño mecánico y la interacción entre sus elementos incluyendo el proceso de selección de materiales.		1 hora
2	Identificar las distintas teorías y criterios de falla, a través del desarrollo de un diagrama lógico, para la selección del método más adecuado de análisis de elementos de sistemas mecánicos, con una actitud reflexiva.	de falla con las que desarrolla un diagrama de flujo que permite la	Apuntes de la unidad de aprendizaje y computadora.	5 horas
3	Identificar los procesos de diseño para transmisión de potencia por bandas, cadenas y engranes, a	con el proceso de diseño de	aprendizaje y computadora.	3 horas

T-	1	i e e e e e e e e e e e e e e e e e e e		r 1
	través del desarrollo de un diagrama lógico, para el dimensionamiento adecuado de sus componentes, de forma metódica y con actitud responsable.	bandas, cadenas y engranes.		
4	Identificar los distintos enfoques para el diseño de ejes de transmisión de potencia, a través de la recopilación de información y presentación ante el grupo, para posterior aplicación en problemas reales, con profesionalismo.	Realiza una exposición sobre los distintos enfoques para el diseño de ejes de transmisión de potencia, a partir de la información presentada en un ensayo elaborado por el mismo alumno, que contiene como mínimo portada, introducción, desarrollo, conclusiones y referencias bibliográficas. Las referencias deben incluir las obligatorias de este curso y al menos 2 adicionales.	Apuntes de la unidad de aprendizaje, acceso a bibliografía obligatoria del curso (biblioteca) y computadora.	4 horas
5	Identificar distintos elementos mecánicos necesarios, a través de la recopilación de información de fabricantes y consulta de normas aplicables, para la integración de una máquina, con responsabilidad.	Investiga las características, normas aplicables y los manuales de las principales marcas comerciales de embragues, acoplamientos, frenos y cojinetes para realizar un mapa de ideas donde ilustre los principales parámetros necesarios para su selección.	Manuales de fabricantes comerciales de embragues, acoplamientos, frenos, cojinetes y computadora.	3 horas

	VI. ESTRUCTURA DE LAS PRÁCTICAS DE LABORATORIO			
No. de Práctica	Competencia	Descripción	Material de Apoyo	Duración
1	Seleccionar el material más adecuado, mediante el uso del método tradicional, gráfico y de bases de datos, para su uso en una aplicación práctica de diseño mecánico, con responsabilidad y de forma ordenada.	Realiza la selección del material adecuado para un producto, a partir de un caso dado por el docente, siguiendo los pasos de los métodos tradicional, gráfico y de bases de datos.	Apuntes de la unidad de aprendizaje, tablas de propiedades de materiales, mapas de materiales seleccionados por el docente y acceso a base de datos gratuita por internet o programa de cómputo especializado.	2 horas
2	Analizar elementos mecánicos, mediante el empleo de las teorías y criterios de falla, para el diseño de productos, con actitud reflexiva y responsabilidad.	Resuelve ejercicios prácticos sobre elementos mecánicos sometidos a cargas estáticas o fluctuantes y los recopila en un portafolio de evidencias, presentándolos tal como se realiza en un contexto real.	e elementos mecánicos tidos a cargas estáticas o cargas fluctuantes y formato de antes y los recopila en un folio de evidencias, entándolos tal como se realiza	
3	Dimensionar bandas, cadenas y engranes, a través de la aplicación de los métodos aplicables, para diseñar sistemas de transmisión de potencia, con responsabilidad.	sobre sistemas de transmisión de transmisión de potencia potencia, los recopila en un bandas, guía de ejercicio		6 horas
4	Dimensionar ejes de transmisión de potencia, mediante el análisis de las cargas que deben soportar, para su uso en transmisiones por bandas cadenas y/o engranes, con actitud responsable.	Resuelve ejercicios prácticos sobre ejes de transmisión de potencia, los recopila en un portafolio de evidencias y las presenta tal como se realiza en un contexto real.	Guía de ejercicios sobre diseño de ejes de transmisión de potencia.	8 horas
5	Seleccionar elementos mecánicos, a través de los procedimientos de fabricantes comerciales, para la integración de una máquina sencilla, con responsabilidad.	Resuelve ejercicios prácticos básicos sobre selección de embragues, acoplamientos, frenos y cojinetes, los recopila en un portafolio de evidencias y los presenta tal como se realiza en un	Guía de ejercicios sobre selección de embragues, acoplamientos, frenos y cojinetes.	6 horas

contexto real.		
----------------	--	--

VII. MÉTODO DE TRABAJO

Encuadre: El primer día de clase el docente debe establecer la forma de trabajo, criterios de evaluación, calidad de los trabajos académicos, derechos y obligaciones docente-alumno.

Estrategia de enseñanza (docente)

El docente funge como facilitador exponiendo los temas y propiciando la reflexión, promoviendo a su vez la integración de contenidos entre las distintas unidades temáticas. A su vez, el docente desarrolla ejercicios guiados frente al grupo para demostrar la metodología en cada unidad y guiará en aquellos que el alumno debe solucionar promoviendo la participación de todo el grupo.

Estrategia de aprendizaje (alumno)

El alumno participa de manera activa por medio del intercambio de ideas, realizando tareas, ejercicios y el estudio de casos. Además, resuelve problemas referentes al diseño mecánico tal como se realiza en un contexto real y demuestra dominio de la información teórica relevante de la asignatura mediante ensayos, mapas de ideas, resúmenes o exposiciones

VIII. CRITERIOS DE EVALUACIÓN

La evaluación será llevada a cabo de forma permanente durante el desarrollo de la unidad de aprendizaje de la siguiente manera:

Criterios de acreditación

- Para tener derecho a examen ordinario y extraordinario, el estudiante debe cumplir los porcentajes de asistencia que establece el Estatuto Escolar vigente.
- Calificación en escala del 0 al 100, con un mínimo aprobatorio de 60.

Criterios de evaluación

-	Promedio de evaluaciones parciales	40%
	Promedio de prácticas de taller y/o laboratorio	
	Evidencia de desempeño	
	(Portafolio)	

Total..... 100%

IX. REFERENCIAS		
Básicas	Complementarias	
Budynas, R. G. & Nisbett, J. K. (2015). <i>Shigley's mechanical engineering design</i> (10 th ed.). United States: McGraw Hill.	Hall, A. S., Holowenko, A. R. y Laughlin, H. G. (1977). <i>Diseño de máquinas: Teoría y problemas resueltos</i> (1ª ed.). México: McGraw Hill. Serie Schaum. [clásica]	
Juvinall, R. C. (2012). <i>Diseño de elementos de máquinas</i> (2ª ed.). México: Limusa. [clásica]	MatWeb, LLC. (2018). Search: MatWeb. Recuperado de MatWeb: Online Materials Information Resource: www.matweb.com	
Robert, L. & Mott, E. M. (2017). Machine elements in mechanical design (6 th ed.). United States: Pearson.		

X. PERFIL DEL DOCENTE

El docente que imparte esta asignatura debe contar con título en Ingeniería mecánico, mecatrónica, aeroespacial o afín. Preferentemente con posgrado relacionado al área de diseño de elementos mecánicos. Se sugiere experiencia en la industria como diseñador mecánico y como docente impartiendo asignaturas afines de por lo menos 2 años. Debe tener facilidad para transmitir el conocimiento, proactivo, disposición para seguir reglamentos de taller o laboratorio y responsable